Sequencing the Connectome
نویسندگان
چکیده
Connectivity determines the function of neural circuits. Historically, circuit mapping has usually been viewed as a problem of microscopy, but no current method can achieve high-throughput mapping of entire circuits with single neuron precision. Here we describe a novel approach to determining connectivity. We propose BOINC ("barcoding of individual neuronal connections"), a method for converting the problem of connectivity into a form that can be read out by high-throughput DNA sequencing. The appeal of using sequencing is that its scale--sequencing billions of nucleotides per day is now routine--is a natural match to the complexity of neural circuits. An inexpensive high-throughput technique for establishing circuit connectivity at single neuron resolution could transform neuroscience research.
منابع مشابه
Conneconomics: The Economics of Large-Scale Neural Connectomics
We analyze the scaling and cost-performance characteristics of current and projected connectomics approaches, with reference to the potential implications of recent advances in diverse contributing fields. Three generalized strategies for dense connectivity mapping at the scale of whole mammalian brains are considered: electron microscopic axon tracing, optical imaging of combinatorial molecula...
متن کاملRosetta Brains: A Strategy for Molecularly-Annotated Connectomics
We propose a neural connectomics strategy called Fluorescent In-Situ Sequencing of Barcoded Individual Neuronal Connections (FISSEQ-BOINC), leveraging fluorescent in situ nucleic acid sequencing in fixed tissue (FISSEQ) [1, 2]. FISSEQ-BOINC exhibits different properties from BOINC [3, 4], which relies on bulk nucleic acid sequencing. FISSEQ-BOINC could become a scalable approach for mapping who...
متن کاملUsing high-throughput barcode sequencing to efficiently map connectomes
The function of a neural circuit is determined by the details of its synaptic connections. At present, the only available method for determining a neural wiring diagram with single synapse precision-a 'connectome'-is based on imaging methods that are slow, labor-intensive and expensive. Here, we present SYNseq, a method for converting the connectome into a form that can exploit the speed and lo...
متن کاملGenetics of the connectome
Connectome genetics attempts to discover how genetic factors affect brain connectivity. Here we review a variety of genetic analysis methods--such as genome-wide association studies (GWAS), linkage and candidate gene studies--that have been fruitfully adapted to imaging data to implicate specific variants in the genome for brain-related traits. Studies that emphasized the genetic influences on ...
متن کاملConneconomics: The Economics of Dense, Large-Scale, High-Resolution Neural Connectomics
We analyze the scaling and cost-performance characteristics of current and projected connectomics approaches, with reference to the potential implications of recent advances in diverse contributing fields. Three generalized strategies for dense connectivity mapping at the scale of whole mammalian brains are considered: electron microscopic axon tracing, optical imaging of combinatorial molecula...
متن کامل